Aliases: C33⋊9(C4⋊C4), C4⋊(C33⋊C4), C3⋊S3.4D12, C12⋊1(C32⋊C4), (C32×C12)⋊1C4, (C3×C12)⋊6Dic3, C3⋊S3.4Dic6, C3⋊Dic3⋊7Dic3, C32⋊6(C4⋊Dic3), (C3×C3⋊S3).6Q8, (C12×C3⋊S3).4C2, (C4×C3⋊S3).12S3, (C3×C3⋊Dic3)⋊5C4, (C3×C3⋊S3).15D4, (C2×C3⋊S3).40D6, C6.11(C2×C32⋊C4), C3⋊1(C4⋊(C32⋊C4)), C2.5(C2×C33⋊C4), (C6×C3⋊S3).42C22, (C32×C6).18(C2×C4), (C2×C33⋊C4).6C2, (C3×C6).25(C2×Dic3), SmallGroup(432,638)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C33 — C3×C3⋊S3 — C6×C3⋊S3 — C2×C33⋊C4 — C33⋊9(C4⋊C4) |
Generators and relations for C33⋊9(C4⋊C4)
G = < a,b,c,d,e | a3=b3=c3=d4=e4=1, ab=ba, ac=ca, dad-1=a-1, eae-1=ab-1, bc=cb, dbd-1=b-1, ebe-1=a-1b-1, cd=dc, ece-1=c-1, ede-1=d-1 >
Subgroups: 584 in 96 conjugacy classes, 25 normal (23 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, C4⋊C4, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C32⋊C4, S3×C6, C2×C3⋊S3, C4⋊Dic3, C3×C3⋊S3, C32×C6, S3×C12, C4×C3⋊S3, C2×C32⋊C4, C3×C3⋊Dic3, C32×C12, C33⋊C4, C6×C3⋊S3, C4⋊(C32⋊C4), C12×C3⋊S3, C2×C33⋊C4, C33⋊9(C4⋊C4)
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C4⋊C4, Dic6, D12, C2×Dic3, C32⋊C4, C4⋊Dic3, C2×C32⋊C4, C33⋊C4, C4⋊(C32⋊C4), C2×C33⋊C4, C33⋊9(C4⋊C4)
(17 41 22)(18 23 42)(19 43 24)(20 21 44)(25 30 45)(26 46 31)(27 32 47)(28 48 29)
(1 35 39)(2 40 36)(3 33 37)(4 38 34)(5 14 10)(6 11 15)(7 16 12)(8 9 13)(17 41 22)(18 23 42)(19 43 24)(20 21 44)(25 30 45)(26 46 31)(27 32 47)(28 48 29)
(1 39 35)(2 40 36)(3 37 33)(4 38 34)(5 14 10)(6 15 11)(7 16 12)(8 13 9)(17 22 41)(18 23 42)(19 24 43)(20 21 44)(25 45 30)(26 46 31)(27 47 32)(28 48 29)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 45 5 42)(2 48 6 41)(3 47 7 44)(4 46 8 43)(9 19 34 31)(10 18 35 30)(11 17 36 29)(12 20 33 32)(13 24 38 26)(14 23 39 25)(15 22 40 28)(16 21 37 27)
G:=sub<Sym(48)| (17,41,22)(18,23,42)(19,43,24)(20,21,44)(25,30,45)(26,46,31)(27,32,47)(28,48,29), (1,35,39)(2,40,36)(3,33,37)(4,38,34)(5,14,10)(6,11,15)(7,16,12)(8,9,13)(17,41,22)(18,23,42)(19,43,24)(20,21,44)(25,30,45)(26,46,31)(27,32,47)(28,48,29), (1,39,35)(2,40,36)(3,37,33)(4,38,34)(5,14,10)(6,15,11)(7,16,12)(8,13,9)(17,22,41)(18,23,42)(19,24,43)(20,21,44)(25,45,30)(26,46,31)(27,47,32)(28,48,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,45,5,42)(2,48,6,41)(3,47,7,44)(4,46,8,43)(9,19,34,31)(10,18,35,30)(11,17,36,29)(12,20,33,32)(13,24,38,26)(14,23,39,25)(15,22,40,28)(16,21,37,27)>;
G:=Group( (17,41,22)(18,23,42)(19,43,24)(20,21,44)(25,30,45)(26,46,31)(27,32,47)(28,48,29), (1,35,39)(2,40,36)(3,33,37)(4,38,34)(5,14,10)(6,11,15)(7,16,12)(8,9,13)(17,41,22)(18,23,42)(19,43,24)(20,21,44)(25,30,45)(26,46,31)(27,32,47)(28,48,29), (1,39,35)(2,40,36)(3,37,33)(4,38,34)(5,14,10)(6,15,11)(7,16,12)(8,13,9)(17,22,41)(18,23,42)(19,24,43)(20,21,44)(25,45,30)(26,46,31)(27,47,32)(28,48,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,45,5,42)(2,48,6,41)(3,47,7,44)(4,46,8,43)(9,19,34,31)(10,18,35,30)(11,17,36,29)(12,20,33,32)(13,24,38,26)(14,23,39,25)(15,22,40,28)(16,21,37,27) );
G=PermutationGroup([[(17,41,22),(18,23,42),(19,43,24),(20,21,44),(25,30,45),(26,46,31),(27,32,47),(28,48,29)], [(1,35,39),(2,40,36),(3,33,37),(4,38,34),(5,14,10),(6,11,15),(7,16,12),(8,9,13),(17,41,22),(18,23,42),(19,43,24),(20,21,44),(25,30,45),(26,46,31),(27,32,47),(28,48,29)], [(1,39,35),(2,40,36),(3,37,33),(4,38,34),(5,14,10),(6,15,11),(7,16,12),(8,13,9),(17,22,41),(18,23,42),(19,24,43),(20,21,44),(25,45,30),(26,46,31),(27,47,32),(28,48,29)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,45,5,42),(2,48,6,41),(3,47,7,44),(4,46,8,43),(9,19,34,31),(10,18,35,30),(11,17,36,29),(12,20,33,32),(13,24,38,26),(14,23,39,25),(15,22,40,28),(16,21,37,27)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | ··· | 3G | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | ··· | 6G | 6H | 6I | 12A | 12B | 12C | ··· | 12N | 12O | 12P |
order | 1 | 2 | 2 | 2 | 3 | 3 | ··· | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | ··· | 6 | 6 | 6 | 12 | 12 | 12 | ··· | 12 | 12 | 12 |
size | 1 | 1 | 9 | 9 | 2 | 4 | ··· | 4 | 2 | 18 | 54 | 54 | 54 | 54 | 2 | 4 | ··· | 4 | 18 | 18 | 2 | 2 | 4 | ··· | 4 | 18 | 18 |
42 irreducible representations
Matrix representation of C33⋊9(C4⋊C4) ►in GL4(𝔽13) generated by
1 | 0 | 12 | 3 |
0 | 1 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 3 |
9 | 9 | 0 | 4 |
0 | 3 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 3 |
3 | 0 | 9 | 9 |
0 | 3 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 9 |
5 | 0 | 11 | 11 |
1 | 8 | 5 | 5 |
0 | 0 | 0 | 8 |
0 | 0 | 8 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
8 | 12 | 1 | 1 |
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,12,0,9,0,3,0,0,3],[9,0,0,0,9,3,0,0,0,0,9,0,4,0,0,3],[3,0,0,0,0,3,0,0,9,0,9,0,9,0,0,9],[5,1,0,0,0,8,0,0,11,5,0,8,11,5,8,0],[12,0,0,8,0,0,1,12,0,0,0,1,0,1,0,1] >;
C33⋊9(C4⋊C4) in GAP, Magma, Sage, TeX
C_3^3\rtimes_9(C_4\rtimes C_4)
% in TeX
G:=Group("C3^3:9(C4:C4)");
// GroupNames label
G:=SmallGroup(432,638);
// by ID
G=gap.SmallGroup(432,638);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,28,141,64,2804,298,2693,1027,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,e*a*e^-1=a*b^-1,b*c=c*b,d*b*d^-1=b^-1,e*b*e^-1=a^-1*b^-1,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations